## 1 Expected Value

### 1.1 Concepts

| Distribution | PMF | $E(X)$ |
| :---: | :--- | :---: |
| Uniform | If $\# R(X)=n$, then $f(x)=\frac{1}{n}$ for all $x \in R(X)$. | $\sum_{i=1}^{n} \frac{x_{i}}{n}$ |
| Bernoulli Trial | $f(0)=1-p, f(1)=p$ | $p$ |
| Binomial | $f(k)=\left(\begin{array}{l}n \\ k \\ k\end{array}\right) p^{k}(1-p)^{n-k}$ | $n p$ |
| Geometric | $f(k)=(1-p)^{k} p$ | $\frac{1-p}{p}$ |
| Hyper-Geometric | $f(k)=\frac{\binom{m}{k}\binom{N-m}{n-k}}{\left(\begin{array}{l}N\end{array}\right)}$ | $\frac{n m}{N}$ |
| Poisson | $f(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}$ |  |

The Expected Value is the weighted average of all the values the random variables can take on. By definition, it is:

$$
E[X]=\sum x_{i} f\left(x_{i}\right)
$$

It satisfies some properties:

- $E[c]=c$
- $E[c X]=c E[X]$
- $E[X+Y]=E[X]+E[Y]$ for all random variables
- $E[X Y]=E[X] E[Y]$ for independent random variables.


### 1.2 Examples

2. I flip a fair coin 5 times. What is the expected number of heads I flip?

Solution: This is a binomial distribution with $p=\frac{1}{2}$ and $n=5$. Then $E(X)=5 / 2$.
3. I roll two fair 6 sided die. What is the expected value of their product?

Solution: Let $X$ be the first value I roll and $Y$ be the second. The rolls are independent and so $E[X Y]=E[X] E[Y]=3.5 \cdot 3.5=12.25$.
4. I randomly rearrange 10 people of different heights in a line. Let $X$ be the number of people in the right sorted order (person $i$ is the $i$ th tallest person). What is $E[X]$ ?

Solution: Let $X_{1}$ be 1 if the first person is the shortest and 0 otherwise, $X_{2}$ be 1 if the second person is the second shortest and 0 otherwise, all the way up to $X_{10}$. Then $X=X_{1}+X_{2}+\cdots+X_{10}$ and we have that

$$
E[X]=E\left[X_{1}+\cdots+X_{10}\right]=E\left[X_{1}\right]+\cdots+E\left[X_{10}\right] .
$$

Each $X_{i}$ can be thought of as a Bernoulli trial with probability of success $\frac{1}{10}$ so $E\left[X_{i}\right]=\frac{1}{10}$ and

$$
E[X]=\frac{1}{10}+\cdots+\frac{1}{10}=1
$$

### 1.3 Problems

5. True FALSE The expected value of a random variable $X$ is the value such that the PMF at that point is the largest.

Solution: The PMF at that point may be 0! For example, there expected number of heads when flipping 5 coins is 2.5 but we cannot flip 2.5 heads.
6. True FALSE The expected value of a random variable $X$ always exists.

Solution: This is false as seen in the previous homework where the expected value was infinite.
7. True FALSE We have that $E\left[X^{2}\right]=E[X \cdot X]=E[X] E[X]$.

Solution: $X$ and $X$ are not independent from each other.
8. TRUE False If $a \leq X \leq b$ ( $a$ is the smallest $X$ can be and $b$ is the largest), then $a \leq E[X] \leq b$.

Solution: You can think of this as if a die roll is in between 1 and 6 , then the expected value can't be negative or bigger than 6 .
9. While pulling out of a box of cookies, what is the expected number of cookies I have to pull out before I pull out an oatmeal raisin if $20 \%$ of cookies are oatmeal raisin?

Solution: This is a geometric distribution because I am counting the number of cookies I have to pull out before a success. The probability of success is $20 \%=p=$ $1 / 5$. So the expected number of cookies I have to pull out is $\frac{1-p}{p}=4$.
10. What is the expected number of aces I have when I draw 5 cards out of a deck?

Solution: Drawing cards out of a deck without replacement is the hypergeometric distribution. There are $N=52$ cards total and $m=4$ aces total. Then, we pull out $n=5$ cards and so the expected number of aces is $\frac{m n}{N}=\frac{20}{52}$.
11. I am rolling two die and I stop when I roll snake eyes (2 1's). What is the expected number of times I have to roll the die?

Solution: This is a geometric distribution because I roll until a success. The probability of success is $p=\frac{1}{36}$. Looking at the table, I am expected to have $\frac{1-p}{p}=35$ failures and so I roll the die $35+1=36$ times total.
12. The number of lightning strikes during a thunderstorm is given by a Poisson distribution with expected value 10 . What is the probability that there are 5 strikes in the latest storm?

Solution: Since the expected value is $\lambda$, we have that $\lambda=10$. Now the probability of 5 strikes is

$$
f(5)=\frac{10^{5} e^{-10}}{5!}
$$

13. In a safari, safari-keepers have caught and tagged 300 rhinos. On a safari, out of the 15 different rhinos you see, there are 5 of them expected to be tagged. How many rhinos are there at the safari?

Solution: This is a hyper-geometric distribution because out of the $N$ rhinos total and $m=300$ tagged rhinos, you see that $n=15$ rhinos that you see, there are 5 of them expected to be tagged. So $5=E(X)=\frac{m n}{N}=\frac{300 \cdot 15}{N}$. So $N=\frac{300 \cdot 15}{5}=900$.
14. (Challenge) In a class of 30 students, I split them up into 6 groups of 5 on Tuesday. Today, Thursday, I split them up again randomly. What is the expected number of people in your new group were in your old group on Tuesday?

Solution: We can think of this as a hypergeometric distribution where day 1, we "tag" or mark the 4 students that were in your group. Then on day 2 , out of the 29 other students, you want to select 4 of them without replacement to be in your group. This is a hyper-geometric distribution with $N=29, n=4$. Then $m=4$ because there are 4 students that were in your group before. So, the expected number of people in your new group who were in your old group is $\frac{m n}{N}=\frac{4 \cdot 4}{29}=\frac{16}{29}$.

